Calculation of π by Monte-Carlo algorithm

n = 10000

⃗x = random ( fill ( vectorhp ( n ) ; 1 )  )  = random ( fill ( vectorhp ( 10000 ) ; 1 )  )  = [0.8462059 0.405761 0.2823039 0.6996727 0.601867 0.9563235 0.2116242 0.8234081 0.5102444 0.8767052 0.6949812 0.8912439 0.04396681 0.4665829 0.5270865 0.9039292 0.9530263 0.1797755 0.894481 0.5687781 ... 0.706079]

⃗y = random ( fill ( Vectorhp ( n ) ; 1 )  )  = random ( fill ( Vectorhp ( 10000 ) ; 1 )  )  = [0.9303405 0.9746399 0.5287636 0.9840907 0.7006395 0.3512312 0.8141873 0.1313262 0.8584957 0.4996759 0.290746 0.4444213 0.9225536 0.2538623 0.7766397 0.301532 0.4533621 0.8840506 0.4981426 0.6202111 ... 0.2500615]

⃗r =    √⃗x⊙ 2 + ⃗y⊙ 2 = [1.257616 1.05573 0.5994051 1.207467 0.9236556 1.018783 0.8412406 0.833815 0.9986812 1.009103 0.7533473 0.9959046 0.9236006 0.5311738 0.9386103 0.9528954 1.055366 0.9021445 1.023837 0.8415285 ... 0.7490516]

nin = count ( floor ( ⃗r ) ; 0; 1 )  = 7821

PI = 4*n_in/n

@hydrostructai.com